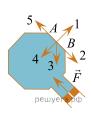

1. В левое колено U-образной трубки с жидкостью I долили не смешивающуюся с ней жидкость II, плотность которой $\rho_{II} = \frac{2}{3} \rho_I$ (см. рис.). Если в состоянии равновесия точка A находится на границе жидкость I — воздух, а точка B — на границе жидкость I — жидкость II, то на границе жидкость II — воздух находится точка под номером:


- 1) 1 5) 5
- 2. В левое колено U-образной трубки с жидкостью I долили не смешивающуюся с ней жидкость II, плотность которой $ho_{II}=rac{5}{4}
 ho_{I}$ (см. рис.). Если в состоянии равновесия точка A находится на границе жидкость II — воздух, а точка B — на границе жидкость I — жидкость II, то на границе жидкость I — воздух находится точка под номером:

- 1) 1 2) 2 3)3 4) 4 5) 5
- 3. Закон Паскаля используется при проведении измерений с помощью:
- 1) рычажных весов;
- 2) мензурки;
- 3) манометра;
- 4) жидкостного термометра;
- 5) песочных часов.
- 4. На рисунке представлены графики (1 и 2) зависимости гидростатического давления p от глубины h для двух различных жидкостей. Если плотность первой жидкости ρ_1 = 0.80 г/см^3 , то плотность второй жидкости ρ_2 равна:

- 1) 0.80 r/cm^3 2) 0.90 r/cm^3 3) 1.4 r/cm^3 4) 1.6 r/cm^3
- 5) 1.8 г/см^3
- 5. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку АВ сосуда, указано стрелкой, номер которой:

- 4) 4 1) 1
- **6.** В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13.6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды $(\rho_2 = 1{,}00 \text{ г/см}^3)$ высотой H = 49 см. Разность Δh уровней ртути в сосудах равна:

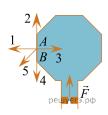
1)	28.	0	MN

2) 32,1 mm

3) 34,9 мм

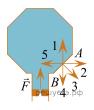
4) 36,0 mm

5) 38,7 mm

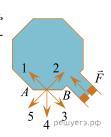

- 7. В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13.6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды $(\rho_2 = 1,00 \text{ г/см}^3)$ высотой H = 23 см. Разность Δh уровней ртути в сосудах равна:
 - 1) 16,9 мм

2) 20,5 мм

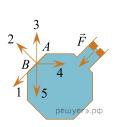
3) 23,8 mm


5) 32,3 mm

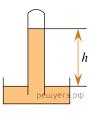
8. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку AB сосуда, указано стрелкой, номер которой:


1) 1 3)3

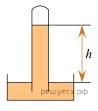
- 9. В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13.6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды ($\rho_2 = 1,00 \text{ г/см}^3$) высотой $H = 19 \text{ см. Разность } \Delta h$ уровней ртути в сосудах равна:
 - 1) 10.5 mm
- 2) 12.2 mm
- 3) 14.0 mm
- 5) 20,2 mm
- 10. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку AB сосуда, указано стрелкой, номер которой:


1) 1

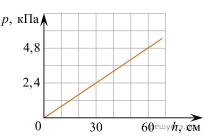
- 11. В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13.6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды ($\rho_2 = 1,00 \text{ г/см}^3$) высотой H = 20 см. Разность Δh уровней ртути в сосудах равна:
 - 1) 10,4 мм
- 2) 11,6 mm 3) 12,3 mm
- 5) 14,7 mm
- 12. В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13.6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды ($\rho_2 = 1,00 \text{ г/см}^3$) высотой H = 11 см. Разность Δh уровней ртути в сосудах равна:
 - 1) 8.1 mm
- 2) 10,5 мм
- 3) 12,4 мм
- 4) 14,3 mm
- 5) 15,8 mm
- 13. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку AB сосуда, указано стрелкой, номер которой:

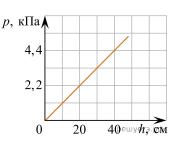

3)3 4) 4 1) 1 2) 2 5) 5

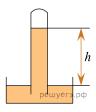
- **14.** В двух вертикальных сообщающихся сосудах находится ртуть ($\rho_1 = 13.6 \text{ г/см}^3$). Поверх ртути в один сосуд налили слой воды ($\rho_2 = 1,00 \text{ г/см}^3$) высотой H = 6,8 см. Разность Δh уровней ртути в сосудах равна:
 - 1) 8,8 мм
- 2) 7,3 mm
- 3) 6,0 mm
- 4) 5.0 MM
- 5) 3,0 mm
- 15. В нижней части сосуда, заполненного газом, находится скользящий без трения невесомый поршень (см.рис.). Для удержания поршня в равновесии к нему приложена внешняя сила \vec{F} . Направление силы давления газа, действующей на плоскую стенку AB сосуда, указано стрелкой, номер которой:



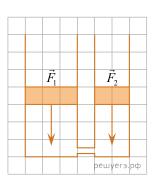
1) 1 2) 2 3)3 5)5


16. Запаянную с одного конца трубку наполнили маслом ($\rho = 940 \ \frac{\mathrm{K\Gamma}}{\mathrm{M}^3}$), а затем погрузили открытым концом в широкий сосуд с маслом (см.рис.). Если высота столба масла h=10,5 м, то атмосферное давление pравно:

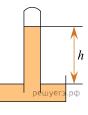

- 1) 97,6 кПа
- 2) 98,7 κΠa
- 3) 99,6 кПа
- 4) 101 κΠa
- 5) 102 κΠa
- 17. Запаянную с одного конца трубку наполнили маслом ($\rho = 900~\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$), а затем погрузили открытым концом в широкий сосуд с маслом (см.рис.). Если атмосферное давление p = 99.9 кПа, то высота столба h равна:


- 1) 11,1 м
- 2) 11,8 m 3) 12,5 m
- 4) 13,2 м
- 5) 13,6 M
- **18.** На рисунке изображён график зависимости гидростатического давления p от глубины h для жидкости, плотность ρ которой равна:

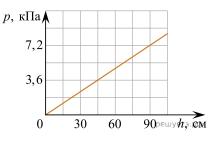
- 1) 1,2 $\frac{\Gamma}{\text{cm}^3}$ 2) 1,1 $\frac{\Gamma}{\text{cm}^3}$ 3) 1,0 $\frac{\Gamma}{\text{cm}^3}$ 4) 0,90 $\frac{\Gamma}{\text{cm}^3}$
- 5) $0.80 \frac{\Gamma}{\text{cm}^3}$
- 19. На рисунке изображён график зависимости гидростатического давления р от глубины h для жидкости, плотность ρ которой равна:

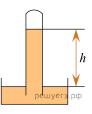


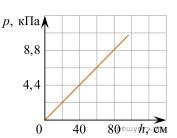
- 1) $1.2 \frac{\Gamma}{\text{cm}^3}$ 2) $1.1 \frac{\Gamma}{\text{cm}^3}$ 3) $1.0 \frac{\Gamma}{\text{cm}^3}$ 4) $0.90 \frac{\Gamma}{\text{cm}^3}$ 5) $0.80 \frac{\Gamma}{\text{cm}^3}$
- **20.** Запаянную с одного конца трубку наполнили глицерином ($\rho=1260~\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$), а затем погрузили открытым концом в широкий сосуд с глицерином (см.рис.). Если высота столба глицерина h = 7,90 м, то атмосферное давление р равно:



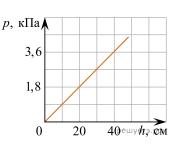
- 1) 98,0 κΠa
- 2) 98,8 κΠa
- 3) 99,5 κΠa
- 4) 101 κΠa
- 5) 102 κΠa


21. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы F_1 = 18 H, то для удержания системы в равновесии модуль силы F_2 должен быть равен:

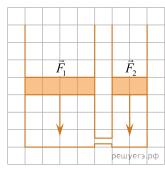

- 1)8H
- 2) 12 H
- 3) 18 H
- 4) 27 H
- 5) 40 H
- **22.** Запаянную с одного конца трубку наполнили соляным раствором ($\rho=1,2\cdot 10^3~\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$), а затем погрузили открытым концом в широкий сосуд с соляным раствором (см.рис.). Если высота столба соляного раствора h=8,50 м, то атмосферное давление p равно:


- 1) 98,0 κΠa
- 2) 99,0 kΠa
- 3) 100 κΠa
- 4) 101 κΠa
- 5) 102 κΠa
- **23.** На рисунке изображён график зависимости гидростатического давления p от глубины h для жидкости, плотность ρ которой равна:

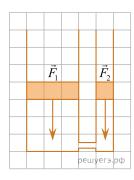
- 1) 1,2 $\frac{\Gamma}{\text{cm}^3}$ 2) 1,1 $\frac{\Gamma}{\text{cm}^3}$ 3) 1,0 $\frac{\Gamma}{\text{cm}^3}$ 4) 0,90 $\frac{\Gamma}{\text{cm}^3}$
- 5) $0.80 \frac{\Gamma}{\text{cm}^3}$
- **24.** Запаянную с одного конца трубку наполнили керосином ($ho=820~\frac{{
 m K}\Gamma}{{
 m M}^3}$), а затем погрузили открытым концом в широкий сосуд с керосином (см.рис.). Если высота столба керосина h = 12,2 м, то атмосферное давление *p* равно:

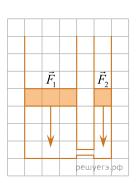


- 1) 99,0 кПа
- 2) 99,5 κΠa
- 3) 100 κΠa
- 4) 101 κΠa
- 5) 102 κΠa
- **25.** На рисунке изображён график зависимости гидростатического давления p от глубины h для жидкости, плотность ρ которой равна:

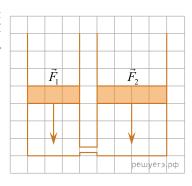


- 1) 1,2 $\frac{\Gamma}{\text{cm}^3}$ 2) 1,1 $\frac{\Gamma}{\text{cm}^3}$ 3) 1,0 $\frac{\Gamma}{\text{cm}^3}$ 4) 0,90 $\frac{\Gamma}{\text{cm}^3}$ 5) 0,80 $\frac{\Gamma}{\text{cm}^3}$


26. На рисунке изображён график зависимости гидростатического давления р от глубины h для жидкости, плотность ρ которой равна:


- 1) $1, 2 \frac{\Gamma}{\text{cm}^3}$ 2) $1, 1 \frac{\Gamma}{\text{cm}^3}$ 3) $1, 0 \frac{\Gamma}{\text{cm}^3}$ 4) $0, 90 \frac{\Gamma}{\text{cm}^3}$ 5) $0, 80 \frac{\Gamma}{\text{cm}^3}$
- 27. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы F_2 = 18 H, то для удержания системы в равновесии модуль силы ${\cal F}_1$ должен быть равен:

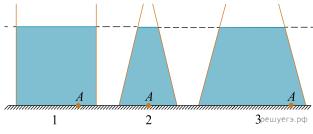
- 1) 4,5 H
- 2) 9 H
- 3) 36 H
- 4) 48 H
- 5) 72 H
- 28. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы F_1 = 36 H, то для удержания системы в равновесии модуль силы F_2 должен быть равен:



- 1) 4 H
- 2) 12 H
- 3) 36 H
- 4) 53 H
- 5) 78 H
- 29. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы $F_2 = 3$ H, то для удержания системы в равновесии модуль силы F_1 должен быть равен:

- 1) 3 H
- 2) 9 H
- 3) 13 H
- 4) 19 H
- 5) 27 H

30. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы F_2 = 64 H, то для удержания системы в равновесии модуль силы F_1 должен быть равен:

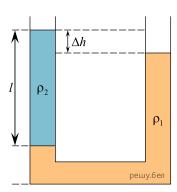


1) 36 H 2) 48 H 3) 64 H

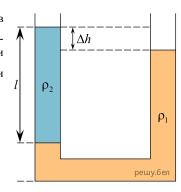
4) 81 H

5) 95 H

31. На рисунке изображены три открытых сосуда (1, 2 и 3), наполненные водой до одинакового уровня. Давления p_1 , p_2 и p_3 воды на дно сосудов в точке A связаны соотношением:



1) $p_1 = p_2 = p_3$ 2) $p_1 = p_2 > p_3$


3) $p_3 > p_1 > p_2$

4) $p_2 > p_1 > p_3$ 5) $p_2 > p_3 > p_1$

32. В одинаковые сообщающиеся сосуды налили воду $\left({{
ho}_1} = 1000\frac{{{
m K}\Gamma }}{{{{
m M}^3}}} \right)$. Поверх воды в один из сосудов наливают неизвестную жидкость, не смешивающуюся с водой (см. рис.). Уровень поверхности воды ниже уровня поверхности неизвестной жидкости на $|\Delta h|=1,0$ см. Если длина столба неизвестной жидкости l = 10.0 см, то плотность этой жидкости ρ_2 равна ... кг/м³}.

33. В одинаковые сообщающиеся сосуды налили воду $\left({{
ho}_1} = 1000\frac{{{
m K}\Gamma }}{{{
m M}^3}} \right)$. Поверх воды в один из сосудов наливают неизвестную жидкость, не смешивающуюся с водой (см. рис.). Уровень поверхности воды ниже уровня поверхности неизвестной жидкости на $|\Delta h| = 2,0$ см. Если плотность неизвестной жидкости $\left({{
ho }_{2}}=900\frac{{{
m K}\Gamma }}{{{{
m M}}^{3}}} \right).$ то длина l столба неизвестной жидкости равна ... см.

